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NVIDIA Project Redtail: https://github.com/NVIDIA-Jetson/redtail.
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Motivation

Autonomous robots have many applications.

I Self-driving cars

I Item deliveries

I Military vehicles

However...

I Labeled image data is expensive to collect.

I DNNs do well on vision tasks but they require a lot of data.

Could we train vision models on synthetic data generated by a simulator?

I In a simulation, we have full control of the environment.

I We have 100% accurate labels for things like image semantics, segmentation, and
depth.

I It is very cheap to generate a ton of labeled synthetic data.
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Our Goal

We want to train a rover to navigate an indoor office environment after only seeing
synthetic data.
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How do autonomous robots work?

I Hardware
I AION Robotics R1
I ZED stereo camera
I NVIDIA Jeston TX2
I PixHawk 2 flight controller

I Software
I The Robot Operating System (ROS)
I MAVROS
I MAVLink
I ArduPilot
I Elbrus Visual Odometry
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Fitting it all together
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TrailNet
Smolyanskiy et al. (2017) train a neural net to predict orientation and translation of a
robot along a trail.

Figure: A drone navigating a forest trail autonomously. Click for video.
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https://www.youtube.com/watch?v=H7Ym3DMSGms


TrailNet architecture

Figure: TrailNet architecture from Smolyanskiy et al. (2017).

For the most part, the network is identical to the standard ResNet-18 architecture.

I No batch norm.

I Shifted ReLU instead of ReLU.
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TrailNet inference

I The network predicts a visual orientation vo and a lateral offset lo.

I A turning angle α is calculated with

α = β1(y
vo
right − yvoleft) + β2(y

`o
right − y`oleft) (1)

where β1 and β2 are scalar angle parameters that control turning speed.

I α is transformed into a waypoint in the robot’s local coordinate system.

I ArduPilot on the PixHawk moves the robot towards the waypoint.
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TrailNet training data
I TrailNet is trained on videos taken while traveling down a trail.
I Each image is given two labels:

I oriented left, straight, or right with respect to the trail.
I translated left, center, or right with respect to the trail.

Figure: Left, straight, and right oriented frames from the center translation.

Figure: Straight oriented frames from left, center, and right translations.
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TrailNet data collection camera rig

Figure: Nikolai Smolyanskiy holds our camera rig on a forest trail.
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TrailNet training data collection

Each fisheye camera captures a wide FOV image.

Figure: Left, center, and right camera frames captured from our camera rig.

We crop and undistort each frame into three 60◦ FOV frames which are offset by 25◦.
The crops provide visual orientation labels and the camera from which the frame was
captured provides lateral offset labels.
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A drive through the office

Figure: Inside NVIDIA’s Redmond office. Click for video.
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https://youtu.be/GWZ9h8OqDds


Simulator camera setup

Using Unreal Engine 4, we drive a camera rig through a simulated office environment
to collect synthetic data.

Figure: Simulator camera rig setup.
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Simulated office environment
We created multiple office environments that are based on NVIDIA’s Redmond office.

Figure: Bird’s-eye view of a simulated office
environment.

Figure: A view inside a simulated office
environment.
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A virtual drive through the office

Figure: A frame from the virtual office environment. Click for video.
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https://youtu.be/Hp8XGKdGFWM


Problems with synthetic data

I It is hard to create enough “noise” in the simulation.
I A real camera gets knocked around and shakes while driving.
I A real office space has random stuff lying around and is asymmetrical.
I Real labeled data used for testing will not be perfect like in a simulation.
I Real lighting can vary drastically around the office.

I Deep models like ResNet-18 will quickly overfit to training data that have little
variety.

I TrailNet converged in one or two epochs on this first synthetic dataset.
I The model did not generalize to real data at all.
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Let’s add noise, then!

I The idea is to add so much noise to the training data in places where it “doesn’t
matter” that the model only learns the important bits.

I We want the model to learn the shape of walls and cubicles and not so much the
color of the ground or walls.

I By doing this, the model may have lower training accuracy and test accuracy on
synthetic data but will have higher test accuracy on real data.
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Domain randomization

I In a simulator, we have full control of our environment.

I We can choose certain aspects of the domain that we don’t want the model to
learn or that will likely change in the real world.

I These items include:
I Textures of the walls, ground, and ceiling.
I Number of objects in the domain like chairs, desks, and people.
I Light orientation and specular characteristics.
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Adding noise to the labels

Consider how a human drives a car in a lane.

I Constantly correcting orientation error.

I There is a range of angles that can be considered as “straight” down the lane.

I We want to emulate this in the training data.
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Noisy waypointing in simulation
Consider the task of driving the camera rig from A to B.
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Noisy waypointing in simulation
We define the destination B as some point within a 5 cm radius of a center.
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Noisy waypointing in simulation
We sample a new endpoint at every frame. This makes the data more realistic!
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Noisy waypointing in simulation
We sample a new endpoint at every frame. This makes the data more realistic!
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Noisy waypointing in simulation
We sample a new endpoint at every frame. This makes the data more realistic!
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A virtual drive through the domain randomized office

Figure: A domain randomized frame. Click for video.
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https://youtu.be/kyIwRyL4PsY


What are the effects of DR?

Figure: Mean synthetic orientation frame. Figure: Mean DR orientation frame.

Figure: Mean synthetic translation frame. Figure: Mean DR translation frame.
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What are the effects of WPR?

Figure: Mean synthetic orientation frame. Figure: Mean WPR orientation frame.

Figure: Mean synthetic translation frame. Figure: Mean WPR translation frame.
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DR + WPR?

Figure: Mean synthetic orientation frame.
Figure: Mean DR + WPR orientation
frame.

Figure: Mean synthetic translation frame.
Figure: Mean DR + WPR translation
frame. 30 / 39



Ablation study

Train Dataset OTA TTA

Penta-cam Sim v4 46.61% 35.06%
Penta-cam Sim v4 + WPR 43.67% 36.30%
Penta-cam Sim v4 + DR 53.74% 39.50%
Penta-cam Sim v4 + WPR + DR 50.63% 44.19%

Table: Reporting orientation test accuracy (OTA) and translation test accuracy (TTA).
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Real data vs. synthetic data

Figure: Mean real orientation frame.
Figure: Mean synthetic DR + WPR
orientation frame.

Figure: Mean real translation frame.
Figure: Mean synthetic DR + WPR
translation frame. 32 / 39



Datasets that we use

Tri-cam v2

I 365,893 frames.

I Collected by driving camera rig around NVIDIA’s Redmond office.

Penta-cam Sim v4

I 20,000 frames.

I Domain randomization of textures and lighting.

I Collected using 4 different paths in simulated office environment.

I Waypoint randomization used along paths.
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Model test performances

Train Dataset Tune Dataset Tune Epochs OTA TTA

Tri-cam v2 None n/a 83.83% 73.56%
Penta-cam Sim v4 + WPR + DR None n/a 50.63% 44.19%
Mixed Penta-cam Sim v4 + WPR + DR
+ Tri-cam 2

None n/a 82.14% 74.72%

Balanced Penta-cam Sim v4 + WPR + DR
+ Tri-cam v2

None n/a 78.21% 72.92%

Penta-cam Sim v4 + WPR + DR Tri-cam v2 1 75.61% 69.56%
Penta-cam Sim v4 + WPR + DR Tri-cam v2 5 82.88% 77.31%
Penta-cam Sim v4 + WPR + DR Tri-cam v2 10 83.38% 78.02%
Penta-cam Sim v4 + WPR + DR Tri-cam v2 15 83.60% 75.26%
Penta-cam Sim v4 + WPR + DR Tri-cam v2 20 83.40% 75.77%

Table: Reporting orientation test accuracy (OTA) and translation test accuracy (TTA).
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Model autonomy scores

Using the models with the best test performances from each domain (real, synthetic,
real + synthetic), we calculate an autonomy score:

a =
# commands issued by DNN

total # commands issued

This score is also used in DriveNet (Bojarski et al., 2016).

Train Dataset Tune Dataset Tune Epochs Autonomy

Tri-cam v2 None n/a 89.83%
Penta-cam Sim v4 + WPR & DR None n/a 93.50%
Penta-cam Sim v4 + WPR & DR Tri-cam v2 10 96.25%

Table: Autonomy scores of the best models in each domain.

35 / 39



Videos!

I Tri-cam v2 in NVIDIA Redmond office

I Penta-cam Sim v4 + WPR + DR tuned 10 epochs on Tri-cam v2 in NVIDIA
Redmond office

I Fails
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https://www.youtube.com/watch?v=pGdrGCCF3rQ
https://www.youtube.com/watch?v=pqFGZB8KCnQ
https://www.youtube.com/watch?v=pqFGZB8KCnQ
https://www.youtube.com/watch?v=KJKy4VUq0aU


Lessons learned

I The cost to create realistic environments in considerable.
I Just because it’s cheap to collect synthetic data does not mean it will be the most

economical overall.
I Requires people with specialized skills.

I Test score is not necessarily representative of performance on the task.
I The model with the highest autonomy did not have the highest test scores.

I It is necessary to go beyond just making the data look like real data.
I Artifacts which appear in real data should be simulated.

I If possible, combining synthetic data with some real data is the best approach.
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